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Abstract—This monograph reports on the development of
the attitude determination backbone of the Ionospheric Ob-
servation Nanosatellite Formation (ION-F). Three space-
craft with similarly modest pointing constraints comprise
the ION-F constellation. Pointing requirements for the con-
stellation are dictated by the formation flying mission ob-
jective and communication demands. To satisfy pointing
requirements the attitude control system for each space-
craft will require attitude estimates with accuracies on the
order of 1 degree. An investigation into sensor suites ca-
pable of satisfying this requirement within the additional
monetary, mass, and power constraints imposed by the
ION-F program was carried out. Ultimately, a gyroless
magnetometer-based Kalman filter was chosen as the atti-
tude determination backbone. A high fidelity simulation
created specifically for ION-F spacecraft revealed the filter
was capable of attitude errors below 1.6◦ (1σ) and rate er-

rors below 0.006 deg
sec

. Further tests using actual telemetered
data from the Danish Øersted satellite were performed with
satisfactory results. Other sensors may be added to this
backbone to increase accuracy and speed filter convergence.
For example, the possibility of incorporating solar panel
data into the filter was examined. It was concluded that un-
der fairly general conditions solar panel data speeds initial
filter convergence and may also be used to estimate mag-
netometer mounting misalignments. Although designed for
the ION-F constellation, the attitude determination system
described in this paper is generically applicable to many
small spacecraft in inclined low-earth orbit. The 1-2 degree
accuracy of which the system is capable lends itself well
to small satellite applications such as formation flying and
imaging or docking with other spacecraft.

I. Introduction

SMALL spacecraft (SC) entered a new era with the ini-
tiation of the AFSOR/DARPA University Nanosatel-

lite Program (UNP) . Several universities were awarded
the challenge of designing SC of the nanosatellite weight
class (approximately 10 kg) under tight budget constraints
using primarily student labor. This much has been done
before. Stanford and the University of Alabama, among
others, have already launched student-built SC with en-
couraging results. But never before have university SC
been as ambitious in their design and declared mission
objectives as those involved in the UNP. The SC com-
prising the ION-F constellation (under the auspices of the
UNP) are a good example of this ambition. The Univer-
sity of Washington/Cornell’s DAWGSTAR, Virginia Poly-
technic Institute’s HOKIESAT, and Utah State Univer-
sity’s USUSAT are each SC of extraordinary power and
complexity. If successful, the ION-F SC will be the first
student-built 3-axis stabilized SC. Within industry, ION-
F is preceded in 3-axis stabilization only by Surrey Satel-
lite Technology’s SNAP for the nanosatellite weight class.
Other nanosatellite platforms have invariably depended on

passive gravity gradient or spin stabilization.
The AD system for the ION-F cluster has been designed

to exploit the capability of the ION-F SC, while satisfying
several constraints imposed by the UNP. In the sequel,
the design of the backbone AD system for ION-F is de-
tailed. The design is tested by simulation and results are
presented, along with results of tests using actual satellite
data. Possible hardware additions to the AD backbone are
considered. The use of body-mounted solar cells is given
particular attention owing to their ubiquity on small SC.
An appendix is also provided wherein the more tedious de-
tails of the magnetometer-based Kalman filter are found.

II. Sensor Suite Selection

External constraints imposed on the ION-F AD system
may be divided into three categories: Price, Poundage,
and Power. The tight budget under which the ION-F SC
were designed and built militated against the use of costly
AD hardware. As a result, the sensor suites of the SC
are comprised of non-redundant less accurate components
with little or no flight heritage. Mass constraints, limiting
each of the SC to an approximate 15 kg, also discouraged
the use of larger, more accurate, or redundant sensors.
Finally, the small surface area of the ION-F SC translated
into a tight power budget. This is most severe for the
smaller USUSAT, whose nominal available power will be
12 Watts.

Initially, a triad of quartz vibratory rate gyroscopes was
considered an essential component of the AD backbone.
These gyros would enable rapid kinetic energy dumping
during detumble and provide a consistent rate input to the
AD routines throughout the rest of the mission. However,
consideration of the gyros cost, mass, and power require-
ments demanded a compelling reason to include them on
the SC [1]. This was especially true for USUSAT, where
the power demands of the most practical Systron Don-
ner QRS11 gyros represented 20% of the overall power
budget. These compelling reasons were never found. A
clever approach to detumble relying solely on magnetome-
ter measurements (the so-called B-dot algorithm) has been
shown to adequately dissipate initial SC kinetic energy,
while proper filtering techniques based on magnetometer
measurements provide a continuously available rate esti-
mate accurate to within 0.006deg

sec .
The accuracy of vibratory microgyroscopes suitable for

small SC has not yet been reached to the point where these
should be considered an essential member of the AD sen-
sor suite. Most notable are large turn-on rate biases and
significant bias instability (0.5 to 2 deg

sec and 7 deg
hr respec-
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tively for the QRS11). Several institutions such as NASA’s
Jet Propulsion Laboratory and British Aerospace are pro-
ceeding with development of accurate low-cost vibratory
microgyros, but the trend has been that size and power
reductions equal signal-to-noise ratio reductions which de-
grade accuracy. Within a decade, these challenges will
most likely be surmounted and inclusion of gyros on small
SC will become the status in quo.

The three-axis magnetometer (TAM) is an indispens-
able element in any AD sensor suite. Almost every
attitude-controlled SC since NASA’s 1979 MAGSAT mis-
sion has included some type of magnetic field sensor. The
TAM provides a continuously available two-axis attitude
measurement with surprising accuracy (details of expected
TAM accuracy will be discussed in a later section). The
TAM’s relative low cost and almost insignificant power
demand (300 mA for the Applied Physics model 533 [2])
further increase its appeal. For these reasons, the AD
backbone discussed in this work is based on TAM mea-
surements.

Other useful AD sensors suitable for small SC include
sun, horizon, star, and differential GPS sensors. The latter
constitutes another continuously available attitude source,
but may not yet be suitable for small SC owing to the
need to resolve phase ambiguities and the large number of
required GPS channels [3]. Sun and horizon sensors in the
form of small CMOS cameras have been developed for use
on the ION-F SC. While not considered part of the ION-F
AD backbone because of their intermittency, algorithmic
complexity, and lack of flight heritage, the sun and horizon
cameras offer the exciting prospect of sub-degree accuracy
and will be included in the ION-F AD estimate if they
prove themselves during SC commissioning.

The CMOS star camera [4] is the ultimate desidera-
tum of a small SC AD platform. Several of these cameras
mounted strategically would afford nearly continuous 3-
axis SC attitude knowledge. Prototype development con-
tinues along these lines, with star measurements in the face
of angular rates posing the most daunting challenge. The
CMOS star camera acts as an integrator of photons im-
pingent on its collector array. Background thermal noise
requires either long integration times or cooling/focusing
equipment in order to detect a sufficient number of stars to
provide reliable sensing. When the SC is rotating, long in-
tegration times translate into streaks instead of points on
the collector array. Presently, this would limit SC rotation
rates to under 0.1deg

sec . Clearly, the CMOS star camera will
not constitute a panacea for small SC AD, but will aug-
ment an AD backbone capable of continuously available
rate estimates.

III. Filter Design

A. Description

With the TAM as primary sensor for the ION-F AD
backbone, it was necessary to design a magnetometer-
based extended Kalman filter (MEKF) capable of accu-
rate attitude estimates. One such approach was intro-
duced in the seminal work by Psiaki et al. [5] where a

Kalman filtering scheme for three-axis estimation based
solely on TAM data is developed. Although only two axes
of attitude information are simultaneously measurable us-
ing a TAM, Psiaki demonstrates that for moderately in-
clined orbits the SC attitude, rate, and constant distur-
bance torques are (weakly) observable through proper fil-
tering of the TAM data. Application of this filter is limited
to nadir-pointing gravity-gradient stabilized SC, however,
since linearization of the SC dynamics and measurement
sensitivity functions, in addition to the weak state observ-
ability, leads to instability for wide initial mispointing an-
gles. With the gravity gradient boom, the SC is able to
right itself to within a capture envelope of the assumed
initial orientation. Psiaki demonstrates good convergence
for mispointings below 45◦ and possible convergence up to
60◦.

The filter reported in this monograph is similar to the
one originally introduced by Psiaki, but includes sev-
eral modifications which allow more universal convergence.
The structure of the filter is modified to handle mispoint-
ings beyond 90◦ and innovations not conforming to the
small-angle assumption of the EKF. Filter updates are
slightly modified to decrease the probability of covariance
matrix explosion, while a failsafe reset allows for this con-
tingency.

Due to the tedium involved in setting up and deriv-
ing the extended Kalman filter applied to TAM measure-
ments, details of the filter are included in the appendix.
In brief, the full filter state is composed of 10 elements:
The four quaternion elements, a rate vector estimate, and
a disturbance torque estimate:

x =




q̄
ω
nd


 (1)

The quaternion and rate vector are necessary for attitude
control, while the disturbance torque estimate adds ro-
bustness to the filter by estimating the magnitude and di-
rection of slowly varying disturbance torques. A reduced
state excluding one of the redundant quaternion elements
is used in the linearized Kalman filter. Measurement in-
novations for the linearized filter are based on the arith-
metic difference between expected and actual magnetic
field readings (not the cross-product as in [5]), allowing
initial mispointings up to 180◦.

B. Implementation

Filter implementation follows the pattern outlined in
section VIII-D of the appendix with slight modification.
The state vector estimate x̂k|k is propagated as usual with
numerical integration to yield x̂k+1|k. However, when the
body-referenced state error estimate, ∆ˆ̃xk+1|k+1 is to be
combined with x̂k+1|k to yield an updated state estimate,
care must be taken to combine the quaternions properly.
The rate and disturbance torque components of the esti-
mate are added as usual:

ω̂k+1|k+1 = ω̂k+1|k + ∆ω̂k+1|k+1 (2)
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n̂d k+1|k+1 = n̂d k+1|k + ∆n̂d k+1|k+1 (3)

but the updated quaternion is formed by

ˆ̄qk+1|k+1 =

[
δq̂k+1|k+1√

1− ||δq̂k+1|k+1||2

]
⊗ ˆ̄qk+1|k (4)

During initial convergence, the argument of the square
root in (4) may become negative, meaning the small an-
gle assumption has been violated by a large mispoint-
ing. When this condition is detected, the estimated error
quaternion is written instead as

1√
1 + ||δq̂k+1|k+1||2

[
δq̂k+1|k+1

1

]
(5)

The more accurate update (4) is again adopted as the filter
settles and ||δq̂k+1|k+1||2 decreases below unity.

Also during initial convergence, the error covariance ma-
trix P may become very large due to violations of the
small angle approximation. This is mitigated by starting
the algorithm with an initial measurement update before
performing the first time update. Also, the re-calculation
of the Hk matrix using the filtered state estimate as men-
tioned in section VIII-D helps reduce the size of P at each
sample step. Simulation has demonstrated that for some
initial conditions, however, these countermeasures are not
failsafe, and it becomes necessary to reset P and x̂ to their
initial values, i.e., Pk+1|k+1 = P0|0, x̂k+1|k+1 = x̂0|0. This
reset is effected when the trace of P exceeds a predeter-
mined threshold.

IV. Simulation

A high fidelity simulation was chosen as means to test
the MEKF. Linear analysis of the MEKF is limited in
its ability to predict filter accuracy and stability for the
varying biases, initial conditions, and disturbances en-
countered in practice. For a thorough linear analysis, the
reader is referred to [5].

A. Simulation Structure and Error Modeling

Simulations were carried out in Matlab Simulink using
a simulator designed specifically for the ION-F SC. An
outline of the simulator structure is seen in Fig. 1. The
Satellite Dynamics and Time block generates SC attitudes
and ephemerides using a three degree-of-freedom satellite
rotational model and a two-body orbit propagator, while
providing time elapsed since January 1, 2000 and since
the epoch of simulation. The Estimation Algorithms block
contains Kalman filtering routines. The Attitude Sensors
block is a motley collection of sensor simulators and iner-
tial vector calculators. Solar ephemerides are calculated
within this block using the algorithm presented in [6] to
a precision of 0.01◦. Inertial magnetic field vectors are
simulated using a 10th-order IGRF model. TAM, solar
panel, sun camera, and horizon camera readings are simu-
lated using appropriate additive noise and biases. Albedo
impingent on the solar panels is calculated assuming a
diffusely radiating sphere [7] and a time varying albedo

factor [8]. Shadowing effects are also taken into account
for USUSAT’s particular dual-boom structure.

 
Fig. 1. Simulation testbed for ION-F spacecraft.

Probable magnetic measurement related errors were
calculated as shown in table I. Entries marked cali-

TABLE I

Magnetic Field Estimation and Measurment Error Sources.

Source RMS Value(deg)
Modeling error (10th order) 0.1
In-track orbit uncertainty 0.384
Onboard magnets 0.5 (calibrated)
TAM noise 0.0077
12-bit quantization 0.027
Scale Factor negligible (calibrated)
Orthogonality and alignment 0.5 (calibrated)
RSS Total 0.81

brated assume an onboard calibration routine presented
in section VI has reduced biases, scale factors, and non-
orthogonalities to the displayed levels.

It would be ingenuous to simulate the above errors by
simply adding an uncorrelated error source producing an
equivalent total RMS value of 0.81◦ to the simulation.
Many of the above error sources are highly time-correlated.
The Kalman filter deals much less effectively with time-
correlated noise than with white noise sources. To ap-
proximate the autocorrelation of the above sources, two
IGRF field models were used. The truth model was cho-
sen as a 10th order IGRF model. The estimated field was
a 6th order IGRF model with coefficients offset from the
truth epoch by 5 years. This results in time-correlated
magnetic field errors with an RMS value close to 0.81◦, as
seen in Fig. 2.

The filter was applied successfully to several different
SC models, but most extensively tested using the speci-
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Fig. 2. Typical magnetic field model error (deg) using a 10th order
truth model and 6th order, 5 year offset estimation model.

fications for USUSAT (15kg, 51◦, 400km circular orbit,
Ixx = Iyy = 0.85, Izz = 1.6kg-m2).

B. Filter Tuning

The parameters P0|0, R, and Q within the EKF may
be modified to optimize its performance for a given appli-
cation. These parameters must be chosen judiciously to
balance inherent tradeoffs involved. For a linear Kalman
filter, P0|0 may be chosen arbitrarily large, with the rate
of convergence increasing with larger P0|0. When nonlin-
ear dynamics and measurement equations are linearized in
the EKF, however, it is implicitly assumed that the initial
state estimate is close to the actual initial state, and a large
P0|0 causes the filter to diverge. Steady-state performance
of the EKF is most directly linked to the process noise
covariance matrix Q, which reflects disturbances and pos-
sible uncertainty in the SC dynamics model. In the face
of white Gaussian process and measurement noise, one
would increase the value of the diagonal elements of Q to
add robustness and increase the bandwidth of the filter,
and decrease Q to improve accuracy. When noise sources
are non-Gaussian and non-white, changing the values in Q
has a less predictable effect. For the present filter, tuning
proceeded as follows: The diagonal elements of P0|0 were
chosen slightly less than the square of the expected errors
in the initial state vector x̂0|0. All off-diagonal elements
are set to zero. The diagonal elements of R are chosen
to reflect measurement error. For the magnetic field vec-
tor, these values are obtained by comparing the magnetic
field truth model against the estimation model. For other
sensor measurements corresponding diagonal elements of
R reflect expected error contributions. Off-diagonal ele-
ments are set to zero. The elements of Q corresponding
to the vector part of the error quaternion are set to zero.
The remaining six diagonal elements are initialized with
the square of expected rate and torque errors, and then
tuned to balance robustness and accuracy objectives.

C. Filter Evaluation

Extensive Monte-Carlo simulation was performed on the
filter. Initial attitude and rates were varied, as well as
simulation epoch and RAAN. Initial rates were bounded
between 0.03 and 3 deg

sec . No knowledge of initial attitude
or rates was assumed.

Using TAM data alone, the filter invariably converged

to less than 5◦, usually in less than one orbit. A typical
example of this is given in Fig. 3.

0 2000 4000 6000 8000 10000 12000
0

50

100

150

200

Time (s)

θ er
r (

de
g)

Fig. 3. Typical convergence of magnetometer-only EKF.

A zoomed view of the latter half of Fig. 3 is provided
in Fig. 4 to demonstrate steady-state accuracy. The filter
performs within a 1.6◦ (1σ) envelope. The filter’s evalu-
ation of angular rates was especially good. Steady-state
accuracies less than 0.006deg

sec were typical.
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Fig. 4. A zoomed view of the second orbit of Fig. 12 (deg).

Filter robustness was evaluated by subjecting the dy-
namic model of the SC to a slowly varying external dis-
turbance torque. Given the geometry and altitude of
USUSAT, the only non-negligible disturbance torque will
be aerodynamic. Assuming a 2cm offset between the cen-
ter of pressure of the largest panel and the SC center of
mass, a 1µ N-m disturbance torque is reasonable. A si-
nusoidally varying disturbance torque with such an ampli-
tude was applied to the body X-axis. The results of this
are displayed in Figs. 5 and 6. They demonstrate good
estimation of the input torque, and little effect on overall
accuracy.
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Fig. 5. The magnetometer-only filter is able to accurately estimate
a 1µN-m amplitude slowly varying sinusoidal input torque on the
body X- axis.

Robustness of the filter was also demonstrated by
adding uncertainty to the SC inertia tensor. A 10% mo-
ment of inertia variation on each axis produced negligible
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Fig. 6. Steady state error for case with varying 1µN-m disturbance
torque shows satisfactory filter performance in the face of external
disturbances. (deg)

changes in steady-state accuracy. This is due to the fil-
ter’s ability to model inertia mismatching as a disturbance
torque.

Filter performance was also evaluated using actual TAM
data from the Danish Øersted satellite, launched in Febru-
ary of 1999 (62kg, 96.6◦, 600-850km elliptical orbit, Ixx =
2192, Iyy = 2196, Izz = 1.5kg-m2). Øersted enjoys a 6 m
boom for gravity gradient stabilization and TAM isolation.
A high precision compact spherical coil magnetometer is
mounted at the end of the boom. Despite the highly ac-
curate magnetic field readings, determination of the Øer-
sted attitude represented a challenge to the MEKF be-
cause no knowledge of attitude control torques was avail-
able to the filter. The filter is well suited to estimate
slowly varying (such as sinusoids at the orbital period)
disturbance torques, but cannot estimate rapidly chang-
ing disturbances unless a tradeoff is made that degrades
steady-state filter accuracy. Inspection of the Øersted at-
titude profile reveals that on several occasions during the
data span used in simulation the magnetic torquing rods
were activated to trim SC orientation. Moreover, the in-
ertia tensor used to model Øersted dynamics was only ap-
proximate, and no attempt was made to re-tune the fil-
ter noise parameters–these were left as for USUSAT. The
truth model for the Øersted data was taken from atti-
tude estimates produced by a star imager mounted close to
the TAM. The results of the simulation are shown in Fig.
7. Evidently, the filter converges rapidly and performs
within a 10◦ steady-state error envelope. This is satis-
factory given the incomplete knowledge of control torques
mentioned above.
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Fig. 7. Filter evaluation using actual magnetometer data from Øer-
sted. The filter converges rapidly and is sufficiently accurate given
incomplete knowledge of control torques.

V. Filter Convergence Issues

The results of the evaluation of the MEKF presented
above are somewhat specious. It is mentioned that the
EKF “usually” converges in less than one orbit. This
would naturally lead one to inquire into “unusual” con-
vergence. With the weak state observability provided by
TAM and the highly nonlinear relationship between the
measured magnetic field vector and SC attitude, patho-
logical cases arise wherein convergence does not take place
within one orbit. These cases are made more infrequent
by the several enhancements to the filter mentioned in
section III-A (and more thoroughly in the appendix), but
cannot be wholly avoided unless filter robustness against
disturbance torques is to be sacrificed. This is one of the
tradeoffs inherent in filter tuning. These types of patho-
logical cases arose with a frequency of about 1:15 during
simulation. One such case may be seen in Fig. 8. The
filter eventually converged in just over two orbits (13,000
sec), but this type of belated convergence is, well, unset-
tling.
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Fig. 8. Delayed convergence case using magnetometer data only.
The filter eventually settled just after two orbits (13,000 sec)

There exist several methods to deal with the erratic con-
vergence of MEKFs. Surrey Satellite Technology’s SNAP
nanosatellite was equipped with a MEKF [10]. The ap-
proached used by the SNAP team lead by W.H. Steyn
was to place the the SC in a Y-Thompson (fixed nadir
pointing) state. A specially designed pitch filter was then
employed to estimate the pitch angle. A full state EKF
was then initialized with the known SC attitude. This
method worked well in practice onboard the SNAP SC. It
is not meant to converge in less than one orbit, however.

Another alternative is introduced by M. Challa et al.
in [11]. In this approach, the MEKF is primed using the
well-known deterministic TRIAD algorithm. The TRIAD
algorithm is a single-frame attitude estimator requiring
two reference vectors as input. Although only the mag-
netic field vector is instantaneously available, Challa and
his colleagues were able to cleverly extract a pseudo-vector
from the derivative of the magnetic field vector using batch
measurements. This method has yet to be tested in flight
and introduces some computational complexity, but pro-
vides very rapid convergence (less than 500 seconds) and
has proven itself when applied to telemetry from orbiting
SC.

For the ION-F SC, another method was employed that
makes use of already available attitude hardware–the
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body-mounted solar panels. This approach was taken to
investigate the utility of solar panels as sun sensors. If
sufficiently accurate, the solar panels might also be used
to counter another shortcoming of the MEKF–possible
TAM reference frame misalignments (these will be dis-
cussed shortly).

A. Solar Panels as Attitude Sensors

It is well known that the ratio of measured solar panel
current to the current at normal sunlight incidence is ap-
proximately equal to the cosine of the angle of the incident
sunlight. i.e.,

cos(θ) ≈ Isc(θ)
Isc(0)

(6)

Here, Isc(θ) is the short-circuit current of a set of solar
cells forming a panel with incident sunlight arriving at
an angle θ from normal. Once this ratio is obtained, a
scalar measurement is passed to the EKF as described in
section VIII-E, immediately increasing state observability.
Short-circuit current is not directly observable from the
solar panels as these are connected to the SC bus and are
under constant load. If certain parameters of the solar
cells are known, however, it is possible to extract Isc from
the relation

Isc(θ) = IL(θ) + Io(ekVL(θ) − 1) (7)

which is the standard diode equation model adapted for
solar cells. The current off each panel under load and the
bus voltage (IL and VL) are measured onboard the SC
and combined with the parameters k and Io which are
determined for each panel before launch. These may be
computed empirically if a sun-simulating lamp is available
($30,000.00 price tag). They may also be computed using
the manufacturer’s specifications at normal sunlight in-
cidence for maximum-power voltage and current (Vmp(0)
and Imp(0)), short-circuit current (Isc(0)) and open-circuit
voltage Voc(0) for each cell.

The accuracy of angular measurements from the solar
cells is directly related to the precision with which Isc(0),
k, and Io are known. Accuracy is also related to the sen-
sitivity of the arc-cosine function, which increases as sun-
light approaches normal. To set ideas, consider a 1.2%
error in estimating Isc(0). Manufacturer’s specs for each
solar cell could give rise to such an error because solar cells
are often categorized in groups spanning several milliamps
[9]. Angular error bounds resulting from a 1.2% error in
Isc(0) are plotted in Fig. 9. The significance of sensitivity
near normal incidence is apparent.

Accuracy is further complicated by the slight non-
cosineness of the current rolloff with increasing incidence
angles. To investigate this effect further, a machinists ta-
ble was used to position a mockup satellite to precisely
known orientations with respect to the sun and an inci-
dence angle test was conducted. The setup for the exper-
iment is shown in Fig. 10 with the cosine rolloff for each
cell shown in Fig. 11. A second-order polynomial was
found to fit this data well, which allowed the quadratic
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Fig. 9. Angle error bounds due to a 1.2% error in estimating Isc(0)

formula to be used instead of the arc-cosine function to
extract angles from current ratios. After the incidence
angle test, the SC was positioned in several arbitrary ori-
entations with respect to the sun. A conical intersection
algorithm was applied to the current ratios from the solar
cells taken two at a time, and the sun vector was routinely
pinpointed to within 5◦.

 
Fig. 10. Setup for sun vector tests using solar panels. Visible are
the mock satellite, machinists table, and pointing boom.
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Fig. 11. Rolloff of current ratio with incidence angle is slightly above
cosine.

Possibly the most egregious of all error contributors to
solar panel-extracted scalar measurements is earth albedo.
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Both albedo and shadowing effects were included as part
of the simulation applied to the ION-F SC. Taking all of
these error sources in aggregate, one may conclude that
solar panel data is roughly an order of magnitude less ac-
curate than TAM data. It was found that continuous use
of solar panel measurements in the EKF only corrupted
the steady-state estimate. This is due to the strong time
correlation of albedo-induced noise, which makes averag-
ing difficult. It was found most useful to incorporate solar
panel data in the EKF only as needed. Necessity is estab-
lished by observing at each time step the elements of the
innovation vector ∆zk corresponding to the scalar solar
panel measurements. If these innovations exceed expected
albedo contributions by a predetermined threshold, a flag
is set. While the flag is set, solar panel data is incorpo-
rated into the EKF. The flag remains set until the sun is
no longer available, or the innovations become sufficiently
small over a sufficiently long span, at which time the flag
is cleared and the filter uses TAM data only. Incorpora-
tion of the solar panel data serves a dual purpose: Initial
convergence time is decreased and attitude anomalies aris-
ing in steady-state may be detected more easily using this
second independent reference.

It should be noted that within the construct of the EKF
even one sunlit solar panel can provide useful data. At
least two sunlit solar panels are required, in addition to
the TAM data, to uniquely determine the SC attitude, but
one panel often reduces the estimate error significantly,
allowing the MEKF to converge.

Augmented by solar panel data, the MEKF was applied
to the pathological case of Fig. 8. The result is displayed
in Fig. 12, along with a plot of sun availability and inten-
sity for each panel. With the increased observability, the
filter converges very rapidly. Extensive simulations of this
sort were carried out, and for each case tested, the filter
converged to less than 5◦ within one orbit.

It should be noted that the backbone MEKF structure
lends itself readily to additional vector or scalar measure-
ments (besides the solar panels). For example, sun and
horizon sensor measurements, as well as star camera data
are easily folded into the MEKF backbone.

VI. Magnetometer Calibration

One final hurdle to using the MEKF for attitude es-
timates with accuracies of approximately 1◦ has to do
with TAM calibration. This is accomplished in two
parts. First, TAM biases, scale factors, and internal non-
orthogonalities are estimated using a Kalman filter that
functions independent of SC orientation [12]. The mea-
sured and expected magnetic field magnitude are differ-
enced and this scalar value constitutes the innovation for
the Kalman filter.

A second calibrating Kalman filter is used to estimate
TAM reference frame misalignments. The reference marks
on the outside of inexpensive TAMs may be up to 2◦ offset
from the internal TAM reference frame [2]. This condi-
tion may be further exacerbated by mounting errors. Un-
less one has access to precision magnetic field simulation
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Fig. 12. The initial conditions of Fig. 8 were used now with solar
panel data added to the filter. The benefit of the additional data is
apparent in the swift convergence. The lower figure indicates avail-
ability and intensity of light incident on the solar panels.

facilities, these misalignments must be calibrated on or-
bit. In contrast to the first calibration filter, this second
filter requires input from a sensor independent from the
TAM in order to make misalignments observable. The
angle between the measured magnetic field vector and,
say, the measured sun vector, is differenced from its ex-
pected counterpart. This value is used as innovation for
the misalignment-estimating Kalman filter.

This second filter was implemented using solar panel
data as the independent measurement. A TAM misalign-
ment of 2◦ in pitch, 2◦ in roll, and 3◦ in yaw was added to
the simulator. Estimation of the misalignment was slow
due to the inaccuracy of solar panel measurements and
strong time correlation of albedo-induced errors, but the
misalignment was eventually reduced to tolerable levels.
This is reported in Fig. 13. Of course, more accurate
sensors may also used as independent measurements with
swifter and more accurate results.

The possibility of such thorough TAM calibration means
that the TAM used for modestly accurate magnetometer-
based attitude estimation need not be mounted on a 6 me-
ter precision machined boom, but may be included within
the SC, and may be mounted imprecisely, as on a printed
circuit board.

VII. Conclusion

The ION-F satellite cluster will rely on an attitude de-
termination backbone that uses the magnetometer as prin-
cipal attitude sensor. The backbone stands as an indepen-
dent, reliable, and inexpensive attitude estimation plat-
form to which other sensors may be added to increase accu-
racy and speed convergence. Software testing will continue
during the summer of 2002 with an emphasis on supervi-
sory attitude software for graceful contingency handling
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Fig. 13. Estimation of magnetometer misalignments using solar
panel data. Error reduction is slow but eventual.

and attitude mode switching. As of May, 2002, the esti-
mation algorithms have been converted to C++ and are
being tested on the ION-F CPU, which is handling the
demanding computations splendidly. The attitude deter-
mination backbone presented in this work, along with the
ION-F spacecraft as integrated units, will serve to clear the
brush for future student satellites of even greater complex-
ity and possibility.
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VIII. Appendix

A. Reference Frames

For the purposes of filter devopment, a minimal set of
reference frames is introduced. The orientation of SC body
coordinate system (CS) is determined by the SC inertia
tensor with its origin at the SC center of mass. When
represented in the SC body CS, the inertia tensor is di-
agonal. Another reference frame, the SC body-geometric
CS, is aligned with geometric features of the SC. Due to
symmetry, the body CS for ION-F SC will be close to the
body-geometric CS.

A reference frame in which the magnetic field vector
and the sun vector are known is generically referred to
as the reference CS, or reference frame. This may be an
inertial or non-inertial CS, as long as directional and rate
vectors are modified accordingly. In this work, the Earth-
centered-inertial (ECI) CS is chosen a the reference CS.
Calculation of the Earth magnetic field is performed in
the Earth-centered-fixed (ECF) CS.

B. Attitude Parameterization

The SC attitude is parameterized by the 4x1 quaternion,
q̄, and the 3x3 direction-cosine matrix, A. The quaternion
is composed of a vector and scalar part.

q̄ =
[

q
q4

]
(8)

with
q = ê sin(θ/2), q4 = cos(θ/2) (9)

Here, ê is a unit vector corresponding to the axis of rota-
tion and θ is the angle of rotation. The elements of the
quaternion possess only three degrees of freedom and sat-
isfy the constraint q̄T q̄ = 1. The direction-cosine matrix
A is related to the quaternion by

A(q̄) =




q2
1−q2

2−q2
3+q2

4 2(q1q2+q3q4) 2(q1q3−q2q4)

2(q1q2−q3q4) −q2
1+q2

2−q2
3+q2

4 2(q2q3+q1q4)

2(q1q3+q2q4) 2(q2q3−q1q4) −q2
1−q2

2+q2
3+q2

4




(10)
This may also be written

A(q̄) = (q2
4 − ||q||2)I3×3 + 2qqT − 2q4[q×] (11)

The skew-symmetric matrix [q×] defined as

[q×] =




0 −q3 q2

q3 0 −q1

−q2 q1 0


 (12)

is the cross-product equivalent matrix and will be used
often in the derivations that follow.

The convention here used for A is that A casts a vector
written in the reference frame into body frame coordinates,
i.e.,

b = Ar (13)

The product of two quaternions follows the same ordering
convention as the matrix product. Thus,

A(q̄′)A(q̄) = q̄′ ⊗ q̄ (14)

The quaternion product operation ⊗ is most easily ex-
pressed as a matrix product

q̄′ ⊗ q̄ = [q̄′]q̄ (15)

where

[q̄′] =




q′4 q′3 −q′2 q′1
−q′3 q′4 q′1 q′2
q′2 −q′1 q′4 q′3
−q′1 −q′2 −q′3 q′4


 (16)

or alternatively, as

q̄′ ⊗ q̄ = {q̄}q̄′ (17)

where
{q̄} = [Ξ(q̄)|q̄] (18)

with the 4× 3 matrix Ξ(q̄) defined in the next section.

C. Attitude Dynamics

Euler’s equation expresses the fundamental relationship
between external moments applied to the SC and the time
rate of change of the angular momentum vector, L.

next =
(

dL

dt

)

I

=
(

dL

dt

)

B

+ [ω×]L (19)
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Here the subscripts I and B denote that the derivative
is taken with respect to the inertial or body frame. The
angular momentum vector L is the product of the 3 × 3
inertia matrix I and the angular velocity vector: L =
Iω. There always exists a reference frame in which I is a
diagonal matrix. This is called a principal reference frame.
The SC body CS is a principal reference frame, and hence
I will always be diagonal with principal moments of inertia
Ixx, Iyy, and Izz when expressed in the body CS.

Euler’s equation may be rewritten to isolate the time
derivative of ω:

ω̇ = I−1(−[ω×]Iω + nc + nd) (20)

Here, next has been broken down into control and distur-
bance components

next = nc + nd (21)

The time evolution of the quaternion is as

˙̄q =
1
2
Ω(ω)q̄ (22)

with

Ω(ω) =




0 ω3 −ω2 ω1

−ω3 0 ω1 ω2

ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0


 (23)

For small sampling intervals h, the quaternion may be
propagated according to

q̄k =

[
I4×4 cos

(
λh

2

)
+ Ω(ω)

sin
(

λh
2

)

λ

]
q̄k−1 (24)

where λ = ||ω||. This equation is useful for propagation.
Also useful is the 4× 3 matrix Ξ(q̄) defined by

Ω(b)q̄ = Ξ(q̄)b, Ξ(q̄) =




q4 −q3 q2

q3 q4 −q1

−q2 q1 q4

−q1 −q2 −q3


 (25)

D. Kalman Filtering

A review of extended Kalman filtering concepts is in-
cluded here to provide notational consistency.

The state vector x evolves according to the state equa-
tion

ẋ(t) = f(x(t), u(t), t) + w(t) (26)

where f(x(t), u(t), t) is a nonlinear function of the state
and control vectors. The process noise w(t) is zero-mean
white noise described by the process noise matrix Q.

E[w(t)wT (t′)] = Q(t)δ(t− t′) (27)

Measurements are assumed to be a nonlinear function of
the state, taken at discrete time intervals, and corrupted
by measurement noise v.

zk = h(xk) + vk (28)

The discrete noise sequence vk is uncorrelated and zero-
mean with covariance

E[vkvT
s ] = Rkδk,s (29)

In the extended Kalman filter (EKF), nonlinear func-
tions are linearized for use in propagating the matrix Ri-
catti equations and computing the Kalman gain. If the
state error vector is defined as the difference between the
true state and the state estimate

∆x = x− x̂ (30)

then a first-order linear approximation is written

∆ẋ(t) = F (t)∆x(t) + G(t)∆u(t) + w(t) (31)

To arrive at F and G, the function f(x, u, t) is linearized
about the state estimate. The Kalman filter produces both
pre-measurement and post-measurement state estimates,
and the philosophy of the extended Kalman filter is to use
the best state estimate available at the time linearization
is required. For now, this will be denoted generically as x̂.
Hence,

F (t) = ∂f(x,u,t)
∂x |x=x̂, G(t) = ∂f(x,u,t)

∂u |x=x̂ (32)

The linearized measurement equation is given by

∆zk = Hk∆xk + vk (33)

where ∆zk, the innovation, contains the new information
provided by the latest measurement, and is defined by

∆zk = zk − ẑk = zk − h(x̂k) (34)

The measurement sensitivity matrix Hk is found by lin-
earizing h(xk) about the current best state estimate

Hk =
∂h(x)

∂x
|x=x̂k

(35)

The continuous Kalman filtering equations are now dis-
cretized in order to propagate the Ricatti equations at each
sampling step. F (t) is assumed constant over the sampling
interval, and discretized according to

Φ(t) = eFt, Φk ≡ Φ(Ts) (36)

The matrix Φk is called the state transition matrix. Dis-
crete versions of G(t) and Q(t) may be found by

Gk =
∫ Ts

0
Φ(t)Gdt, Qk =

∫ Ts

0
Φ(t)QΦT (t)dt (37)

Here again it is assumed that G and Q are approximately
constant over the sampling interval Ts. Furthermore, u is
assumed constant over the sampling interval.

The discrete, linear state space model may now be sum-
marized as follows

∆xk+1 = Φk∆xk + Gkuk + wk (38)

∆zk = Hk∆xk + vk (39)
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The Kalman filter is applied to this model.
In practice, the state transition matrix is not used in

the propagation step (time update) of the Kalman filter.
Rather, the nonlinear dynamics equations are numerically
integrated with an integration step much smaller than Ts.
The state transition matrix is used for the propagation of
the discrete Ricatti equations. Because the accuracy of
these computations is not needed at the same level as the
state vector propagation, the transition matrix is usually
approximated using only the first few terms of the Taylor
series expansion of eFTs , i.e.,

Φk ≈ I + FTs (40)

The extended Kalman filtering equations are summa-
rized as follows:
Initialization
• Begin with an initial estimate of the state, x̂0|0
• Reflect the uncertainty in the initial estimate in the ini-
tial error covariance matrix, P0|0
Prediction (Time Update)
• Numerically integrate the nonlinear dynamics equations
using x̂k|k as the initial condition to obtain a predicted
estimate of the state. Call this estimate x̂k+1|k. It rep-
resents the estimate of the state at step k + 1 given the
previous k measurements.
• Compute the state transition matrix

Φk ≈ I + FTs (41)

F is a linearization of the system dynamics equations
about x̂k|k.
• Compute the process noise covariance matrix

Qk =
∫ Ts

0

Φ(t)QΦT (t)dt (42)

• Update the error covariance matrix

Pk+1|k = ΦkPk|kΦT
k + Qk (43)

Filtering (Measurement Update)
• Update the measurement sensitivity matrix by lineariz-
ing about the current best state estimate

Hk+1|k =
∂h(x)

∂x
|x=x̂k+1|k (44)

• Compute the Kalman gain

Kk+1 = Pk+1|kHT
k+1|k(Hk+1|kPk+1|kHT

k+1|k + Rk+1)−1

(45)
• Update the state error estimate

∆x̂k+1|k+1 = ∆x̂k+1|k + Kk+1(∆zk+1 −Hk+1|k∆xk+1|k)
(46)

This may be simplified by noting that by definition

∆x̂k+1|k = x̂k+1|k − x̂k+1|k = 0 (47)

and rewriting

∆x̂k+1|k+1 = Kk+1(∆zk+1) = Kk+1(zk+1 − h(x̂k+1|k))
(48)

• Add the state error estimate to the predicted state esti-
mate to obtain the filtered (post-measurement) state esti-
mate

x̂k+1|k+1 = x̂k+1|k + ∆x̂k+1|k+1 (49)

• Update the measurement sensitivity matrix using the
filtered state estimate. Note that this second update of
H is not a part of the traditional EKF. It is included to
bring about a more rapid decrease in the value of the er-
ror covariance matrix P . Without this modification, large
initial state errors frequently cause P to grow sharply at
first, making convergence difficult.

Hk+1|k+1 =
∂h(x)

∂x
|x=x̂k+1|k+1 (50)

• Update the error covariance matrix

Pk+1|k+1 = (I−Kk+1Hk+1|k+1)Pk+1|k(I−Kk+1Hk+1|k+1)
T

+ Kk+1Rk+1KT
k+1

(51)

E. An EKF for Spacecraft Attitude Determination Based
on Magnetometer and Solar Panel Measurements

The dependence of the four quaternion elements given
by q̄T q̄ = 1 gives rise to an error covariance matrix P
that is singular. This follows from the fact that since ˆ̄q
and q̄ are each of euclidean length 1, their difference, ∆q̄
must be orthogonal to both ˆ̄q and q̄ as ||∆q̄|| → 0. Hence,
∆q̄T ˆ̄q ≈ 0, and [

ˆ̄q
06×1

]
(52)

is a null vector of P . Maintaining the singularity of P
is made difficult because of round-off error accumulation.
There are several ways to deal with this issue. One may
simply ignore the singularity of P , and treat each of the
quaternion elements as independent in the filtering pro-
cess. Normalization of the quaternion external to the filter
becomes necessary, and this represents an outside interfer-
ence which must be taken into account. No effort is made
to maintain the singularity of P . This method works rea-
sonably well in practice, although propagation of the out-
side interference constitutes an additional computational
expense [13].

Another method described in Lefferts et al.[14] is
adapted for use in the sequel.

Typical attitude determination is concerned with esti-
mating the SC attitude (as parameterized by the quater-
nion) and angular rate. In the absence of rate gyros, both
the quaternion and angular rate vector are included in the
state to be estimated. For added robustness and accuracy
in the face of slowly varying disturbance torques, an esti-
mate of the disturbance torque vector, nd, is also included
in the state estimate [5]. The full 10-dimensional state is
then

x =




q̄
ω
nd


 (53)
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In order to represent the state without the quaternion re-
dundancy, a 9× 1 body-referenced state vector is defined
as

x̃ =




δq
ω
nd


 (54)

The quantity δq is called the vector component of the error
quaternion. The error quaternion is defined implicitly by

q̄ = δq̄ ⊗ ˆ̄q (55)

Because the error quaternion corresponds almost certainly
to a small rotation, the fourth component will be close to
unity. But during initial convergence, this approximation
is often violated. This is accounted for in section III-B
found in the main body of this work. In general, it is
assumed that θ is sufficiently small. Hence, all attitude
information of interest is contained in the vector part of
the error quaternion, δq. Using (18), the quaternion com-
position is rewritten as a matrix product

q̄ = δq̄ ⊗ ˆ̄q = [Ξ(ˆ̄q)|ˆ̄q]δq̄ (56)

The normalization constraint on the quaternion gives rise
to the following three properties involving Ξ(q̄):

ΞT (q̄)q̄ = 0 (57)

q̄T Ξ(q̄) = 0 (58)

ΞT (q̄)Ξ(q̄) = I3×3 (59)

Using these properties, it follows easily that

δq = ΞT (ˆ̄q)q̄ (60)

δq4 = ˆ̄qT
q̄ (61)

The body-referenced state vector may now be related to
the standard state vector




δq
ω
nd


 =

[
ΞT (ˆ̄q) 03×6

06×4 I6×6

] 


q̄
ω
nd


 (62)

or
x̃ = ST (ˆ̄q)x (63)

By noting that

ˆ̃x = ST (ˆ̄q)x̂ =




0
ω
nd


 (64)

the vector ∆x̃ ≡ x̃− ˆ̃x becomes

∆x̃ =




δq
∆ω
∆nd


 (65)

This 9-dimensional body-referenced state error vector is
the state vector for the linearized dynamics and measure-
ment equations

∆ ˙̃x(t) = F (t)∆x̃(t) + G(t)∆u(t) + w(t) (66)

∆zk = Hk∆x̃ + vk (67)

Attention now turns to finding explicit forms for F (t)
and Hk. It isn’t necessary to find G(t) since numerical
integration is used to propagate the state, and only the
discretized version of F (t) is necessary for propagating the
matrix Ricatti equations.

F (t) is formed by linearizing the state dynamics equa-
tions about a filtered estimate of the state, ˆ̃xk|k. The
nonlinear dynamics equations for propagating x̃ are based
on those used for the propagation of x, which are

˙̄q =
1
2
Ω(ω)q̄ (68)

ω̇ = I−1(−[ω×]Iω + nd + nc) (69)

ṅd = 0 (70)

Focusing first on the quaternion update, an expression
must be found for the linear time evolution of δq. In other
words, F1(t) in the equation

δq̇(t) = F1(t)∆x̃(t) + G1(t)∆u(t) + w1(t) (71)

is sought. Equations useful for deriving F1 are repeated
here for convenience

q̄ = δq̄ ⊗ ˆ̄q (72)

˙̄q =
1
2
Ω(ω)q̄ (73)

˙̄̂q =
1
2
Ω(ω̂)ˆ̄q (74)

Also useful are the following properties of quaternion com-
position:
• Association

(ā⊗ b̄)⊗ c̄ = ā⊗ (b̄⊗ c̄) (75)

• Commutative relation

ā⊗ b̄ = b̄⊗ ā + 2
[

b× a
0

]
(76)

• Product rule for quaternion composition

d

dt

(
ā⊗ b̄

)
=

(
d

dt
ā

)
⊗ b̄ + ā⊗

(
d

dt
b̄

)
(77)

Applying the product rule to (72) yields

˙̄q = δ ˙̄q ⊗ ˆ̄q + δq̄ ⊗ ˙̄̂q (78)

into which the definitions for the derivatives are substi-
tuted

1
2
Ω(ω)q̄ = δ ˙̄q ⊗ ˆ̄q +

1
2
δq̄ ⊗ Ω(ω̂)ˆ̄q (79)

Rearranging, and using the quaternion inverse q̄−1 defined
by

q̄ ⊗ q̄−1 = [0, 0, 0, 1]T (80)
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yields

δ ˙̄q =
1
2
Ω(ω)q̄ ⊗ ˆ̄q−1 − 1

2
δq̄ ⊗ Ω(ω̂)[0, 0, 0, 1]T (81)

But, by definition,

δq̄ = q̄ ⊗ ˆ̄q−1 (82)

yielding

δ ˙̄q =
1
2
Ω(ω)δq̄ − 1

2
δq̄ ⊗ Ω(ω̂)[0, 0, 0, 1]T (83)

Let

ω̄ =
[

ω
0

]
(84)

then further simplification yields

δ ˙̄q =
1
2
Ω(ω)δq̄ − 1

2
δq̄ ⊗ ˆ̄ω (85)

Noting that Ω(q̄) is linear in its elements,

Ω(ω) = Ω(ω̂ + ∆ω) = Ω(ω̂) + Ω(∆ω) (86)

and invoking the commutative relation yields, after some
cancellation

δ ˙̄q =
[ −[ω̂×]δq

0

]
+

1
2
Ω(∆ω)δq̄ (87)

The following is observed about the second term on the
right hand side:

Ω(∆ω)δq̄ =
[

∆ω
0

]
δq4 + HOT (88)

where δq4 ≈ 1 and HOT is made up of negligible second-
order terms. With this approximation,

δ ˙̄q =
[ −[ω̂×]δq

0

]
+

1
2

[
∆ω
0

]
(89)

from which the desired expression for F1 is extracted

F1 =
[
−[ω̂×]

∣∣∣∣
1
2
I3×3

∣∣∣∣ 03×3

]
(90)

The second component of the dynamics matrix, F2 de-
fined by

∆ẇ(t) = F2(t)∆x̃(t) + G2(t)∆u(t) + w2(t) (91)

is found by straightforward linearization of

f2(x̃) = I−1(−[ω×]Iω + nd + nc) (92)

so that

F2 =
∂f2(x̃)

∂x̃
|x̃=ˆ̃xk|k

=
[
03×3 |Θ(ω̂)| I−1

]
(93)

where

Θ(ω̂) =
df2(x̃)

dω
|x̃=ˆ̃xk|k

(94)

may be written explicitly for a diagonal inertia tensor I as

Θ(ω̂) =




0 ω̂3 (Iyy−Izz)
Ixx

ω̂2 (Iyy−Izz)
Ixx

ω̂3 (Izz−Ixx)
Iyy 0 ω̂1 (Izz−Ixx)

Iyy

ω̂2 (Ixx−Iyy)
Izz

ω̂1 (Ixx−Iyy)
Izz 0




(95)
Finally, F3, defined by

∆ṅd(t) = F3(t)∆x̃(t) + G3(t)∆u(t) + w3(t) (96)

is simply
F3 = [03×9] (97)

by (70). Combining F1, F2 and F3, yields the linearized
dynamics matrix

F =




F1

F2

F3


 =



−[ω̂×] 1

2I3×3 03×3

03×3 Θ(ω̂) I−1

03×3 03×3 03×3


 (98)

Attention now turns to finding a linearization for the
measurement equation. That is, Hk is sought such that to
first order

∆zk = Hk∆x̃ + vk (99)

As mentioned previously, ∆zk is referred to as the inno-
vation and is defined for the classical EKF as

∆zk = zk − h(ˆ̃xk|k−1) (100)

This definition differs from the innovation used in [5],
which is based on a cross-product. The present definition
is preferred where mispointings may exceed 90◦ and am-
biguity would arise using the cross-product. The physical
significance of the cross-product innovation as reported in
[5] is useful for interpretation, but provides no advantage
over the classical innovation for overall filter accuracy. For
the present filter, the measurement zk contains the nor-
malized magnetic field reading from the TAM, and may
be augmented by scalar readings from the solar panels.
Scalar solar panel readings are based on the relation

i(α)
i(0)

= cos(α) = pT sB (101)

which equates a normalized panel current reading to the
inner product of the unit vector normal to the panel, p,
and the normalized sun vector in body coordinates, sB ,
where α is the sunlight incidence angle. The measurement
zk then becomes

zk = h(x̃k) + vk =




A(q̄)bk

pT
1 A(q̄)sk

pT
2 A(q̄)sk

...
pT

NA(q̄)sk




+ vk (102)

where bk and sk are the magnetic field and sun vectors
in the reference CS, and N is the number of sunlit solar
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panels. To find Hk, h(x̃k) is linearized about the current
best state estimate, ˆ̃xk

Hk =
∂h(x̃)

∂x̃
|x̃=ˆ̃xk

(103)

To this end, A(q̄) is rewritten as the product of factors

A(q̄) = A(δq̄)A(ˆ̄q) (104)

The estimated magnetic field and sun vectors in body co-
ordinates

b̂B
k ≡ A(ˆ̄q)bk, ŝB

k ≡ A(ˆ̄q)sk (105)

do not depend on any of the elements of the state x̃, and
may be regarded as multiplicative constants. The rota-
tion matrix A(δq̄) does depend on state elements, and is
linearized by neglecting second-order terms

A(δq̄) ≈ I3×3 − 2[δq×] (106)

The derivative of

h(x̃) =




(I3×3 − 2[δq×])b̂B
k

(I3×3 − 2[δq×])ŝB
k

...
(I3×3 − 2[δq×])ŝB

k


 (107)

is now effected by simple extraction of the linear terms

Hk =
∂h(x̃)

∂x̃
|x̃=ˆ̃xk

=




2[b̂B
k ×] 03×6

2pT
1 [ŝB

k ×] 01×6

...
...

2pT
N [ŝB

k ×] 01×6


 (108)
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